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LE'ITER TO THE EDITOR 

The anisotropic correlation in percolation theory 

Ju M Kolesnikov and T L Chelidze 
Institute of Geophysics of the Georgian SSR, Academy of Sciences, I, Rukhadze st, 380093, 
Tbilisi, USSR 

Received 2 January 1985 

Abstract. The problem of anisotropic correlation in percolation theory is studied. The 
surface of the percolation thresholds x, of the two-dimensional square lattice of sites 32 x 32 
in the space kll, k,, x, is plotted by means of the Monte Carlo method, where kll and k, 
are the anisotropic correlation parameters. 

The recent advent of a great number of different models in percolation theory is due 
to the success which is achieved when applying the results obtained on these models 
to real physical systems. Since the previously suggested random theory of percolation 
(Broadbent and Hammersley 1957) could not describe the total variety of physical 
properties of the systems under investigation, its development has proceeded mainly 
in two directions. The first was connected with the problems of taking into account 
the interaction within the system, which lead to the appearance of the percolation 
threshold value dependence on the correlation parameter, characterising this interaction 
(Duckers and Ross 1974, Napiorkowski and Hemmer 1980). Another approach was 
concerned with the difficulties arising from considering the problem of random percola- 
tion within the systems with anisotropic properties (Guyon 1981, Sarichev and 
Vinogradov 1983). At the same time, there are physical processes requiring, in the 
course of their description, a simultaneous consideration of the correlation effect and 
anisotropy. Thus, when considering the process of the disperse destruction within the 
framework of percolation theory (Chelidze 1983, Chelidze and Kolesnikov 1983), it 
becomes necessary to take into account the effect of the local stress field of elementary 
fracture on the probability of the new fracture occurrence in its vicinity. At the same 
time, it should be noted that this probability may considerably differ in different 
.directions due to the effect of external forces or due to the anisotropy characteristic 
of the material, which finally leads to the occurrence of the anisotropy correlation 
(AC) within the system under consideration. The AC effect on the destruction process 
development can be revealed by analysis of microphotographs of the crack networks 
arising in the samples with their deformation. 

However, since the destruction process description is not the main point of this 
letter, we will proceed to formulate the percolation problem within AC systems, using 
the conventional and general terms of percolation theory for the simplest system-the 
square lattice of sites. (We note herewith that the problem of percolation within the 
AC systems comes close to the Ising model with anisotropic interaction between the 
spins considered in the phase transition theory.) 

Let the population probability of the vacant lattice site depend on the condition 
of its four nearest-neighbour sites, and let x be the population probability of the vacant 
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Figure 1. Possible arrangements of vacant sites in the square lattice and corresponding 
probabilities W, (full circles denote occupied sites, the arrow is oriented in the k,, direction). 

site, having no neighbouring populated sites, and k is the parameter of correlation, 
showing how many times the population probability of the vacant site having a 
neighbouring populated site is higher or lower than x. To introduce AC, we determine 
two different correlation parameters kll and k, for two perpendicular directions. Then, 
as shown in figure 1, the vacant sites with nine different population probabilities may 
be present in the lattice. Since the total population probability should sum to unity 
for all vacant lattice sites, we have 

9 

n,W.= 1 ( 1 )  
i =  I 

where ni is a number of sites with the population probability 

Wi( WI = X ,  W, = kllx, W, = k,x, W, = kix, Ws = k:x, 

W6= kllk,x, W, = kfklx,  W, = kllk:x, W, = k ik :x ) .  

It is clear that when populating the lattice, the pattern of probability distribution over 
the vacant sites changes, and new probabilities may be calculated ( 1 )  allowing for the 
changes of n,. In order to study the functional dependence xc=  F ( k l l ,  k , )  the AC- 

percolation modelling program was set up and realised on the EC-1055 type computer. 
Let us now turn to the results of computation experiments which may be represented 
as the percolation threshold surfaces in space log kll, log k,, x,(kll ,  k , ) .  

Figure 2 represents this surface for the 32 X 3 2  square lattice. The cross marks the 
point which corresponds to the random model. A broken curve on the surface-the 
result obtained earlier by Duckers and Ross (1974)-corresponds to the problem with 
correlation factor over unity. The extreme left point of the surface under consideration 
corresponds to the repulsive type of interaction (the correlation factor is smaller than 
unity) discussed in Napiorkowski and Hemmer (1980). Two regions with a stable 
character of the system behaviour at the correlation parameters variation may be 
marked out. In the region of parameters log kll< 0 the type of x, dependence on log k ,  
is similar to the type of x,  dependence on log kll at log k ,  < 0. Part of the surface 
limited by log kl l ,  log k, > 0 is characterised by a sharp change in x ,  for a small change 
in log klllk,. For example, at a slight log klllk, variation in this region, x,  rolls down 
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Figure 2. The surface of percolation threshold in (xc, log k,,, log k,)-space for the 32 X32 
square lattice. 

from the ‘saturation plateau’, where xc+ 1, into the ‘zero valley’ with xc+ 0. It should 
be mentioned that our results were obtained at finite lattices. Naturally, the surface 
character will be preserved with the increase in the lattice size, though some of its 
details would vary. Depending on the relation between the system sizes and the degree 
of correlation, the percolation process will progress, either uniformly and dispersely 
in the entire system (all basic regularities of the classical percolation theory being 
preserved), or this process becomes so strongly localised that it cannot be described 
by percolation theory. 
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